2012年12月27日星期四

A new synthetic chalcone derivative, 2-hydroxy-3',5,5'-trimethoxychalcone (DK-139), suppresses the Toll-like receptor 4-mediated inflammatory response through inhibition of the Akt/NF-?B pathway in BV2 microglial cells.

Related Articles

A new synthetic chalcone derivative, 2-hydroxy-3',5,5'-trimethoxychalcone (DK-139), suppresses the Toll-like receptor 4-mediated inflammatory response through inhibition of the Akt/NF-?B pathway in BV2 microglial cells.

Exp Mol Med. 2012 Jun 30;44(6):369-77

Authors: Lee YH, Jeon SH, Kim SH, Kim C, Lee SJ, Koh D, Lim Y, Ha K, Shin SY

Abstract
Microglial cells are the resident innate immune cells that sense pathogens and tissue injury in the central nervous system (CNS). Microglial activation is critical for neuroinflammatory responses. The synthetic compound 2-hydroxy-3',5,5'-trimethoxychalcone (DK-139) is a novel chalcone-derived compound. In this study, we investigated the effects of DK-139 on Toll-like receptor 4 (TLR4)-mediated inflammatory responses in BV2 microglial cells. DK-139 inhibited lipopolysaccharide (LPS)-induced TLR4 activity, as determined using a cell-based assay. DK-139 blocked LPS-induced phosphorylation of I?B and p65/RelA NF-?B, resulting in inhibition of the nuclear translocation and trans-acting activity of NF-?B in BV2 microglial cells. We also found that DK-139 reduced the expression of NF-?B target genes, such as those for COX-2, iNOS, and IL-1?, in LPS-stimulated BV2 microglial cells. Interestingly, DK-139 blocked LPS-induced Akt phosphorylation. Inhibition of Akt abrogated LPS-induced phosphorylation of p65/RelA, while overexpression of dominant- active p110CAAX enhanced p65/RelA phosphorylation as well as iNOS and COX2 expression. These results suggest that DK-139 exerts an anti-inflammatory effect on microglial cells by inhibiting the Akt/I?B kinase (IKK)/NF-?B signaling pathway.

PMID: 22382990 [PubMed - indexed for MEDLINE]

dovitinib dna-pk coxinhibitors

没有评论:

发表评论